Hölder Continuity for Local Minimizers of a Nonconvex Variational Problem
نویسندگان
چکیده
|ξ| ≤ f(x, u, ξ) ≤ L(1 + |ξ|). A function u ∈ W 1,p loc (Ω) is a local minimizer of F in Ω if F (u; spt (v − u)) ≤ F (v; spt (v − u)) , for every v ∈ W 1,p loc (Ω) such that spt (v − u) ⊂⊂ Ω. Well known results due to Giaquinta and Giusti [13, 15] ensure that local minimizers of F are locally α-Hölder continuous for some α < 1. According to Meyers’ example in [19], when f is not continuous in Ω × R × R , the α-Hölder continuity for all α < 1 cannot be achieved, even if f is twice differentiable and uniformly convex with respect
منابع مشابه
Optimality conditions for approximate solutions of vector optimization problems with variable ordering structures
We consider nonconvex vector optimization problems with variable ordering structures in Banach spaces. Under certain boundedness and continuity properties we present necessary conditions for approximate solutions of these problems. Using a generic approach to subdifferentials we derive necessary conditions for approximate minimizers and approximately minimal solutions of vector optimizatio...
متن کاملA condition for the Hölder regularity of strong local minimizers of a nonlinear elastic energy in two dimensions
We prove the local Hölder continuity of strong local minimizers of the stored energy functional E(u) = ∫ Ω λ|∇u|2 + h(det∇u) dx subject to a condition of ‘positive twist’. The latter turns out to be equivalent to requiring that u maps circles to suitably star-shaped sets. The convex function h(s) grows logarithmically as s → 0+, linearly as s → +∞, and satisfies h(s) = +∞ if s ≤ 0. These proper...
متن کاملHölder continuity of a parametric variational inequality
In this paper, we study the Hölder continuity of solution mapping to a parametric variational inequality. At first, recalling a real-valued gap function of the problem, we discuss the Lipschitz continuity of the gap function. Then under the strong monotonicity, we establish the Hölder continuity of the single-valued solution mapping for the problem. Finally, we apply these resu...
متن کاملOptimization with Partial Differential Equations
In this paper we consider the optimal control problem governed by a time-dependent variational inequality arising in quasistatic plasticity with linear kinematic hardening. In the first part of the paper we address certain continuity properties of the forward operator, which implies the existence of an optimal control. Moreover, a discretization in time is derived and we show that every local m...
متن کاملOptimal Control of Quasi-static Plasticity with Linear Kinematic Hardening, Part I: Existence and Discretization in Time
In this paper we consider an optimal control problem governed by a time-dependent variational inequality arising in quasistatic plasticity with linear kinematic hardening. We address certain continuity properties of the forward operator, which imply the existence of an optimal control. Moreover, a discretization in time is derived and we show that every local minimizer of the continuous problem...
متن کامل